Abstract
Rheological behavior of a dispersion of small nearly-unilamellar phospholipid bilayer vesicles has been investigated. We conducted steady-state shear experiments and linear viscoelastic experiments. In the dilute and semidilute regime the rheological behavior is similar to that of a hard-sphere dispersion as reported in the literature for viscoelastic measurements, but now also observed in steady shear experiments. The effect of the main acyl-chain phase transition, taking place at 23 °C, can be described with an increase of the effective volume fraction. As a result, with temperature variation one can obtain effective volume fractions larger than the maximum packing fraction for hard spheres. Near and above the maximum packing fraction a dynamic yield stress τy and a frequency independent storage modulus G‘ develop. In this concentration regime the rheological behavior is determined by the interplay between vesicle deformation and the intervesicle interaction, and so far, there is no indication which phenomenon is dominant. A comparison with recently reported measurements suggests that G‘ is proportional to a-3, where a is the vesicle radius. Furthermore, we show that τy ≈ γcG‘ which is in agreement with theory. Here τy is the dynamic yield stress and γc the critical strain which indicates the transition to nonlinear behavior in a viscoelastic experiment. There is a striking resemblance between our high concentration results and those reported in literature for vesicles in the so-called onion phase. To the best of our knowledge this is the first rheological study for concentrated nearly-unilamellar vesicle dispersions with volume fraction and temperature as variables.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.