Abstract

In the biomedical industry, tricalcium phosphate is a bioceramic substance that is frequently employed in the fabrication of scaffolds and bone structures. Fabrication of porous ceramic structures using conventional manufacturing techniques is very challenging because of the brittle nature of the ceramics, which has led to a newly adapted direct ink writing additive manufacturing method. This work investigates the rheology and extrudability of TCP inks to produce near-net-shape structures. Viscosity and extrudability tests found that stable TCP: Pluronic ink of 50 vol.% was more reliable compared to other tested inks prepared from a functional polymer group polyvinyl alcohol. A line study was carried out to identify the printing parameters suitable for printing structures from the selected ink with lesser dimensional error. Printing speed 5 mm/s and extrusion pressure 3 bar was found suitable to print a scaffold through a nozzle of 0.6 mm, keeping the stand-off distance equal to the nozzle diameter. The printed scaffold was further investigated for its physical and morphological structure of the green body. A suitable drying behavior was studied to remove the green body without cracking and wrapping before the sintering of the scaffold.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.