Abstract
Transition-metal-catalyzed [4 + 1] reaction of dienes and carbon monoxide (CO) is the most straightforward and easily envisioned cyclization for the synthesis of five-membered carbocycles, which are ubiquitously found in natural products and functional molecules. Unfortunately, no test of this reaction was reported, and consequently, chemists do not know whether such kind of reaction works or not. Herein, we report that the [4 + 1] reaction of common dienes and CO cannot work, at least under the catalysis of [Rh(cod)Cl]2. However, using cyclopropyl-capped dienes (also named allylidenecyclopropanes) as substrates, the corresponding [4 + 1] reaction with CO proceeds smoothly in the presence of [Rh(cod)Cl]2. This [4 + 1] reaction, with a broad scope, provides efficient access to five-membered carbocyclic compounds of spiro[2.4]hept-6-en-4-ones. The [4 + 1] cycloadducts can be further transformed into other molecules by using the unique chemistry of cyclopropyl groups present in these molecules. The mechanism of this [4 + 1] reaction has been investigated by quantum chemical calculations, uncovering that cyclopropyl-capped dienes are strained dienes and the oxidative cyclization step in the [4 + 1] catalytic cycle can release this (angular) strain both kinetically and thermodynamically. The strain release in this step then propagates to all followed CO coordination/CO insertion/reductive elimination steps in the [4 + 1] catalytic cycle, helping the realization of this cycloaddition reaction. In contrast, common dienes (including cyclobutyl-capped dienes) do not have such advantages and their [4 + 1] reaction suffers from energy penalty in all steps involved in the [4 + 1] catalytic cycle. The reactivity of ene-allenes for the [4 + 1] reaction with CO is also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.