Abstract

Automatic Modulation Classification (AMC) is a well-known problem in the Radio Frequency (RF) domain. Solving this problem requires determining the modulation of an RF signal. Once the modulation is determined, the signal could be demodulated making it possible to analyse the signal for various purposes. Deep Neural Networks (DNNs) have recently proven to be successful in solving this problem efficiently. However, since deep networks consist of several layers resulting in a high number of trainable parameters, the hardware implementations of these solutions are resource-demanding. In order to address this challenge, we propose an efficient deep neural network referred to as RFNet to tackle the AMC problem efficiently. This network introduces the novel Multiscale Convolutional (MSC) layer to extract robust features in different resolutions. In addition, the network takes advantage of several Separable Convolution Blocks (SCB). These blocks employ pointwise and depth-wise convolutions to reduce network complexity. We further introduce RFNet+ and RFNet++ as extensions of RFNet with fewer number of parameters. These variants include fewer floating-point operations and hence a lower hardware implementation cost. Experimental results using the challenging RadioML 2018 dataset show that RFNet-32++ achieves an average classification accuracy of 56.09% over all Signal-to-Noise Ratios (SNRs) and an accuracy of 92.21% in+20dB SNR using only 3.1K parameters. The small number of parameters makes the RFNet family a promising solution for future AMC systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.