Abstract
As an essential protein for bacterial cell division, the tubulin-like FtsZ protein has been selected as a target for development of next generation antimicrobials. PC190723 is a fluoride-containing benzamide compound developed as a FtsZ inhibitor that selectively inhibits growth of multidrug resistant Gram-positive bacteria. Our aim was to investigate the mechanism of resistance to PC109723 conferred by over-expression of a gene, rfiA, in an environmental bacterium Arthrobacter A3. The investigations included analysis of the effect of PC109723 on wild-type Arthrobacter A3 and a recombinant strain over-expressing rfiA, in vivo localization of RfiA, in vitro measurements of fluorine release from PC109723 by membrane extracts from the over-expression strain combined with mass spectrophotometric analysis of reaction products, and modelling of RfiA structure. We describe a novel protein, RfiA, from Arthrobacter A3 that confers PC190723 resistance. RfiA is a PAP2 domain-containing polytopic transmembrane protein that can modify the fluoridated benzamide ring that is critical for high affinity binding of PC190723 with FtsZ. RfiA-mediated modification of PC190723 is the first reported instance of resistance to this antibiotic involving a change to its structure. We predict that adoption of PC190723 or related benzamides as antimicrobials in clinical practice will lead to the acquisition by resistant pathogens of a gene encoding this subfamily of proteins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.