Abstract

Plants resist infection and herbivory with innate immune responses that are often associated with reduced growth. Despite the importance of growth-defense tradeoffs in shaping plant productivity in natural and agricultural ecosystems, the molecular mechanisms that link growth and immunity are poorly understood. Here, we demonstrate that growth-defense tradeoffs mediated by the hormone jasmonate are uncoupled in an Arabidopsis mutant (jazQ phyB) lacking a quintet of Jasmonate ZIM-domain transcriptional repressors and the photoreceptor phyB. Analysis of epistatic interactions between jazQ and phyB reveal that growth inhibition associated with enhanced anti-insect resistance is likely not caused by diversion of photoassimilates from growth to defense but rather by a conserved transcriptional network that is hardwired to attenuate growth upon activation of jasmonate signalling. The ability to unlock growth-defense tradeoffs through relief of transcription repression provides an approach to assemble functional plant traits in new and potentially useful ways.

Highlights

  • Plants resist infection and herbivory with innate immune responses that are often associated with reduced growth

  • We show that growth-defense tradeoffs are uncoupled in leaves of an Arabidopsis mutant lacking five Jasmonate ZIM-domain (JAZ) transcriptional repressors and the photoreceptor phytochrome B

  • We developed an Arabidopsis line with T-DNA insertion mutations in five JAZ genes (JAZ1/3/4/9/10) (Supplementary Fig. 1). These JAZs were selected on the basis of their phylogenetic relationship, their demonstrated role in inhibiting various transcription factors that execute defense responses, and their capacity to interact with DELLA proteins that antagonistically link JA signalling to gibberellic acid (GA)-mediated growth responses (Fig. 1a)[17,18,19,20,21,22]

Read more

Summary

Introduction

Plants resist infection and herbivory with innate immune responses that are often associated with reduced growth. Growth-defense antagonism in this system does not appear to be caused by constraints on the availability of metabolic resources that fuel growth and defensive processes but rather by a hormone-linked transcriptional network that is hardwired to restrict growth and upon activation of JA signalling These collective findings highlight the importance of transcriptional repressor proteins in optimizing growth-defense balance, and further suggest that genetic modification of pathways that integrate defense and light signalling is a potential strategy to combine growth and defense traits in new ways

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.