Abstract

Thioflavin T (ThT), a benzothiazole-based fluorophore, is a prominent dye widely employed for monitoring amyloid fibril assembly. Despite the near-universal presumption that ThT binds to β-sheet domains upon fibrillar surface via hydrophobic forces, the contribution of the positive charge of ThT to fibril binding and concomitant fluorescence enhancement have not been thoroughly assessed. Here we demonstrate a considerable interdependence between ThT fluorescence and electrostatic charges of peptide fibrils. Specifically, by analyzing both fibril-forming synthetic peptides and prominent natural fibrillar peptides, we demonstrate pronounced modulations of ThT fluorescence signal that were solely dependent upon electrostatic interactions between ThT and peptide surface. The results further attest to the fact that fibril ζ-potential rather than pH-dependent assembly of the fibrils constitute the primary factor affecting ThT binding and fluorescence. This study provides the first quantitative assessment of electrostatically driven ThT fluorescence upon adsorption to amyloid fibrils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.