Abstract

Nontopological fermionic solitons exist across a diverse range of particle physics models and have rich cosmological implications. This study establishes a general framework for calculating fermionic soliton profiles under arbitrary scalar potentials, utilizing relativistic mean field theory to accurately depict the interaction between the fermion condensate and the background scalar field. Within this framework, the conventional “fermion bound states” are revealed as a subset of fermionic solitons. In addition, we demonstrate how the analytical formulae in previous studies are derived as special cases of our algorithm, discussing the validity of such approximations. Furthermore, we explore the phenomenology of fermionic solitons, highlighting new formation mechanisms and evolution paths, and reconsidering the possibility of collapse into primordial black holes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.