Abstract
We review recent progress on Horn’s problem, which asks for a description of the possible eigenspectra of the sum of two matrices with known eigenvalues.After revisiting the classical case, we consider several generalizations in which the space of matrices under study carries an action of a compact Lie group, and the goal is to describe an associated probability measure on the space of orbits. We review some recent results about the problem of computing the probability density via orbital integrals and about the locus of singularities of the density. We discuss some relations with representation theory, combinatorics, pictographs and symmetric polynomials, and we also include some novel remarks in connection with Schur’s problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Statistical Mechanics: Theory and Experiment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.