Abstract
In this paper, we formally deduce a new computational model, with a recurrent structure, by means of data granulation. The proposed scheme can be regarded as an Echo State Network (ESN), with an additional granular layer. ESNs have been recently revisited in the context of deep learning. In view of such a state-of-the-art, and coherently with the concept of data granulation, the aim herein is to propose a more efficient and transparent structure. The stability of the proposed scheme is formally discussed. The performance is shown by means of several benchmarks against the state-of-the-art methods. The proposed architecture exhibits a lower computational cost and a higher accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.