Abstract

Abstract. Agricultural land covers 5.1×109 ha (ca. 50 % of potentially suitable land area), and agriculture has immense effects on soil formation and degradation. Although we have an advanced mechanistic understanding of individual degradation processes of soils under agricultural use, general concepts of agropedogenesis are absent. A unifying theory of soil development under agricultural practices, of agropedogenesis, is urgently needed. We introduce a theory of anthropedogenesis – soil development under the main factor “humankind” – the sixth factor of soil formation, and deepen it to encompass agropedogenesis as the most important direction of anthropedogenesis. The developed theory of agropedogenesis consists of (1) broadening the classical concept of factors→processes→properties→functions along with their feedbacks to the processes, (2) a new concept of attractors of soil degradation, (3) selection and analysis of master soil properties, (4) analysis of phase diagrams of master soil properties to identify thresholds and stages of soil degradation, and, finally, (5) a definition of the multidimensional attractor space of agropedogenesis. The main feature of anthropedogenesis is the narrowing of soil development to only one function (e.g. crop production for agropedogenesis), and this function is becoming the main soil-forming factor. The focus on only one function and the disregard of other functions inevitably lead to soil degradation. We show that the factor humankind dominates over the effects of the five natural soil-forming factors and that agropedogenesis is therefore much faster than natural soil formation. The direction of agropedogenesis is largely opposite to that of natural soil development and is thus usually associated with soil degradation. In contrast to natural pedogenesis leading to divergence of soil properties, agropedogenesis leads to their convergence because of the efforts to optimize conditions for crop production. Agricultural practices lead soil development toward a quasi-steady state with a predefined range of measured properties – attractors (an attractor is a minimal or maximal value of a soil property toward which the property will develop via long-term intensive agricultural use from any natural state). Based on phase diagrams and expert knowledge, we define a set of “master properties” (bulk density and macroaggregates, soil organic matter content, C:N ratio, pH and electrical conductivity – EC, microbial biomass and basal respiration) as well as soil depth (A and B horizons). These master properties are especially sensitive to land use and determine the other properties during agropedogenesis. Phase diagrams of master soil properties help identify thresholds and stages of soil degradation, each of which is characterized by one dominating process. Combining individual attractors in a multidimensional attractor space enables predicting the trajectory and the final state of agrogenic soil development and developing measures to combat soil degradation. In conclusion, the suggested new theory of anthro- and agropedogenesis is a prerequisite for merging various degradation processes into a general view and for understanding the functions of humankind not only as the sixth soil-forming factor but also as an ecosystem engineer optimizing its environment to fulfil a few desired functions.

Highlights

  • We introduce a theory of anthropedogenesis – soil development under the main factor “humankind” – the sixth factor of soil formation, and deepen it to encompass agropedogenesis as the most important direction of anthropedogenesis

  • We show that the factor humankind dominates over the effects of the five natural soil-forming factors and that agropedogenesis is much faster than natural soil formation

  • In contrast to natural pedogenesis leading to divergence of soil properties, agropedogenesis leads to their convergence because of the efforts to optimize conditions for crop production

Read more

Summary

Soil degradation by agricultural land use

The processes of additions, losses, transfers and translocation, and transformations of matter and energy over centuries and millennia produce a medium – soil (Simonson, 1959), which supports plant roots and fulfils many other ecosystem functions (Lal, 2008; Nannipieri et al, 2003; Paul, 2014). These functions commonly decrease due to human activities, in particular through agricultural practices because of accelerated soil erosion, nutrient loss (despite intensive fertilization), aggregate destruction, compaction, acidification, alkalization and salinization (Homburg and Sandor, 2011; Sandor and Homburg, 2017). We expand it to encompass agropedogenesis as a key aspect of general anthropedogenesis

Humans as the main soil-forming factor
Concept of agropedogenesis
Attractors of soil degradation: definitions and concept
Examples of attractors of soil degradation
Master soil properties
Multi-dimensional attractor space
Changes in the attractors by specific land use or climatic conditions
Conclusions
Findings
Outlook

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.