Abstract

The microtubule cytoskeleton consists of a highly organized network of microtubule polymers bound to their accessory proteins: microtubule-associated proteins, molecular motors, and microtubule-organizing proteins. The microtubule subunits are heterodimers composed of one α-tubulin polypeptide and one β-tubulin polypeptide that should undergo a complex folding processing before they achieve a quaternary structure that will allow their incorporation into the polymer. Due to the extremely high protein concentration that exists at the cell cytoplasm, there are α- and β-tubulin interacting proteins that prevent the unwanted interaction of these polypeptides with the surrounding protein pool during folding, thus allowing microtubule dynamics. Several years ago, the development of a nondenaturing electrophoretic technique made it possible to identify different tubulin intermediate complexes during tubulin biogenesis in vitro. By these means, the cytosolic chaperonin containing TCP-1 (CCT or TriC) and prefoldin have been demonstrated to intervene through tubulin and actin folding. Various other cofactors also identified along the α- and β-tubulin postchaperonin folding route are now known to have additional roles in tubulin biogenesis such as participating in the synthesis, transport, and storage of α- and β-tubulin. The future characterization of the tubulin-binding sites to these proteins, and perhaps other still unknown proteins, will help in the development of chemicals that could interfere with tubulin folding and thus modulating microtubule dynamics. In this paper, current knowledge of the above postchaperonin folding cofactors, which are in fact chaperones involved in tubulin heterodimer quaternary structure achievement, will be reviewed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.