Abstract
AbstractMachine learning (ML) has become a rising sophisticated technological application trend in the electrical industry in recent years. Such innovation provides optional methodologies for many existing applications, such as power and load profile forecasting, reliability evaluation, substation behavior detection and state observation of electrical equipment, and so on. This paper presents a review of various supervised and unsupervised ML techniques and applications for electrical power systems, including generation, transmission, distribution and micro‐grid. The algorithms and applications are mainly summarized from IEEE journals and the interest of this paper shows the roles and developments of most used algorithms and its corresponding extensions and performance in different applications. © 2021 Institute of Electrical Engineers of Japan. Published by Wiley Periodicals LLC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEJ Transactions on Electrical and Electronic Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.