Abstract

This paper presents a comprehensive review of Uncertainty-Based Multidisciplinary Design Optimization (UMDO) theory and the state of the art in UMDO methods for aerospace vehicles. UMDO has been widely acknowledged as an advanced methodology to address competing objectives of aerospace vehicle design, such as performance, cost, reliability and robustness. However the major challenges of UMDO, namely the computational complexity and organizational complexity caused by both time-consuming disciplinary analysis models and UMDO algorithms, still greatly hamper its application in aerospace engineering. In recent years there is a surge of research in this field aiming at solving these problems. The purpose of this paper is to review these existing approaches systematically, highlight research challenges and opportunities, and help guide future efforts. Firstly, the UMDO theory preliminaries are introduced to clarify the basic UMDO concepts and mathematical formulations, as well as provide a panoramic view of the general UMDO solving process. Then following the UMDO solving process, research progress of each key step is separately surveyed and discussed, specifically including uncertainty modeling, uncertainty propagation and analysis, optimization under uncertainty, and UMDO procedure. Finally some conclusions are given, and future research trends and prospects are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.