Abstract

Forests are one of the largest terrestrial ecosystems on Earth, absorbing carbon dioxide from the atmosphere through photosynthesis and storing it as organic carbon, thereby mitigating global warming. Conducting bibliometric analysis of forest carbon storage can identify current research trends and hot issues in this field, providing data support for researchers and policy makers. This review article provides a comprehensive bibliometric analysis of global forest carbon storage research, using databases from the Web of Science Core Collection. CiteSpace software (6.2.6 version) was employed to visualize and analyze the data, focusing on key researchers, institutions, and countries, as well as major research themes and emerging trends. The main findings are as follows: (1) Since the 21st century, the publication volume in this field has been increasing, with the United States and China being the top contributors. (2) There is active collaboration among key authors, institutions, and countries, with a notable close-knit network centered around French author Philippe Ciais. This group includes nearly half of the field’s authors and many of them are crucial for advancing research in this field. (3) Cluster and citation burst analyses suggest that future research will focus more on the impact of forest management policies on carbon stocks, with particular attention to the roles of northern temperate forests and mangroves in global carbon storage. These findings provide valuable insights into the current state and future directions of forest carbon storage research. This article is instrumental in elucidating the role of forest ecosystems within the global carbon cycle, evaluating the impacts of anthropogenic activities on forest carbon stocks, and informing the development of effective climate change mitigation strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.