Abstract
This review paper provides a comprehensive analysis of over 100 research papers focused on the challenges of robotic grasping and the effectiveness of various machine learning techniques, particularly those utilizing Deep Neural Networks (DNNs) and Reinforcement Learning (RL). The objective of this review is to simplify the research process for others by gathering different forms of Deep Reinforcement Learning (DRL) grasping tasks in one place. Through a thorough analysis of the literature, the study emphasizes the critical nature of grasping for robots and how DRL techniques, particularly the Soft-Actor-Critic (SAC) strategy, have demonstrated high efficiency in handling the task. The results of this study hold significant implications for the development of more advanced and efficient grasping systems for robots. Continued research in this area is crucial to further enhance the capabilities of robots in handling complex and challenging tasks, such as grasping.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Statistics, Optimization & Information Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.