Abstract
Diabetic Retinopathy is a serious vascular disorder that might lead to complete blindness. Therefore, the early detection and the treatment are necessary to prevent major vision loss. Though the Manual screening methods are available, they are time consuming and inefficient on a large image database of patients. Moreover, it demands skilled professionals for the diagnosis. Automatic Diabetic Retinopathy diagnosis systems can replace manual methods as they can significantly reduce the manual labor involved in the screening process. Screening conducted over a larger population can become efficient if the system can separate normal and abnormal cases, instead of the manual examination of all images. Therefore, Automatic Retinopathy detection systems have attracted large popularity in the recent times. Automatic retinopathy detection systems employ image processing and computer vision techniques to detect different anomalies associated with retinopathy. This paper reviews various methods of diabetic retinopathy detection and classification into different stages based on severity levels and also, various image databases used for the research purpose are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Research in Engineering and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.