Abstract

Onshore wind turbines are primarily installed in high-altitude areas with good wind energy resources. However, in winter, the blades are easy to ice, which will seriously impact their aerodynamic performance, as well as the power and service life of the wind turbine. Therefore, it is of great practical significance to predict wind turbine blade icing in advance and take measures to eliminate the adverse effects of icing. Along these lines, three approaches to supervisory control and data acquisition (SCADA) data feature selection were summarized in this work. The problems of imbalance between positive and negative sample datasets, the underutilization of SCADA data time series information, the scarcity of high-quality labeled data, and weak model generalization capabilities faced by data-driven approaches in wind turbine blade icing detection, were reviewed. Finally, some future trends in data-driven approaches were discussed. Our work provides guidance for the use of technical means in the actual detection of wind turbine blades. In addition, it also gives some insights to the further research of fault diagnosis technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.