Abstract

The most common complication of median sternotomy surgery is sternum re-separation after sternal fixation, which leads to high rates of morbidity and mortality. The adhered sternal fixation technique comprises the wiring fixation technique and the use of bio-adhesives. Adhered sternal fixation techniques have not been extensively studied using finite element analysis, so mechanical testing studies and finite element analysis of sternal fixation will be presented in this review to find the optimum techniques for simulating sternal fixation with adhesives. The optimal wiring technique should enhance bone stability and limit sternal displacement. Bio-adhesives have been proposed to support sternal fixation, as wiring is prone to failure in cases of post-operative problems. The aim of this paper is to review and present the existing numerical and biomechanical sternal fixation studies by reviewing common sternal closure techniques, adhesives for sternal closure, biomechanical modeling of sternal fixation, and finite element modeling of sternal fixation systems. Investigating the physical behavior of 3D sternal fixation models by finite element analysis (FEA) will lower the expense of conducting clinical trials. This indicates that FEA studies of sternal fixation with adhesives are needed to analyze the efficiency of this sternal closure technique virtually.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.