Abstract

The plant kingdom produces a variety of fatty acid structures, many of which possess functional groups useful for industrial applications. The species that produce these unusual fatty acids are often not suitable for large scale commercial production. The ability to create genetically modified plants, together with emerging synthetic biology approaches, offers the potential to develop alternative oil seed crops capable of producing high levels of modified lipids. In some cases, by combining genes from different species, non-natural lipids with a targeted structure can be conceived. However, the expression of the biosynthetic enzymes responsible for the synthesis of unusual fatty acids typically results in poor accumulation of the desired product. An improved understanding of fatty acid flux from synthesis to storage revealed that specialized enzymes are needed to traffic unusual fatty acids. Co-expression of some of these additional enzymes has incrementally increased the levels of unusual fatty acids in transgenic seeds. Understanding how the introduced pathways interact with the endogenous pathways will be important for further enhancing the levels of unusual fatty acids in transgenic plants. Eliminating endogenous activities, as well as segregating the different pathways, represent strategies to further increase accumulation of unusual lipids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.