Abstract

A periodically precipitating system wherein interband distance successively decreases is known as revert Liesegang banding. The phenomenon is rare, and the underlying mechanism is implicit. In the present paper, the Liesegang system comprising of AgNO3 and KBr as the outer and inner electrolyte pair showing revert banding in agar gel by employing a 1D experimental setup is studied under varying concentrations of participating species. Revert banding was observed under all the experimental conditions. The concentrations of inner and outer electrolytes were found to play a major role in reverting since they build the ionic strength inside Liesegang tubes. We hypothesize that the band reverting is the interplay of van der Waals and electrical double-layer interactions, and hence classical DLVO (Derjaguin–Landau–Verwey–Overbeek) theory can be applied to interpret reverting. We propose that revert deposition of precipitates is the outcome of flocculation and peptization of sols, which is the manifestation of balancing attractive and repulsive interactions acting on colloidal particles responsible for band formation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.