Abstract

BackgroundGlioblastoma is the most common and lethal type of primary brain tumor. β-Elemene, a natural plant drug extracted from Curcuma wenyujin, has shown strong anti-tumor effects in various tumors with low toxicity. However, the effects of β-elemene on malignant phenotypes of human glioblastoma cells remain to be elucidated. Here we evaluated the effects of β-elemene on cell proliferation, survival, stemness, differentiation and the epithelial-to-mesenchymal transition (EMT) in vitro and in vivo, and investigated the mechanisms underlying these effects.MethodsHuman primary and U87 glioblastoma cells were treated with β-elemene, cell viability was measured using a cell counting kit-8 assay, and treated cells were evaluated by flow cytometry. Western blot analysis was carried out to determine the expression levels of stemness markers, differentiation-related molecules and EMT-related effectors. Transwell assays were performed to further determine EMT of glioblastoma cells. To evaluate the effect of β-elemene on glioblastoma in vivo, we subcutaneously injected glioblastoma cells into the flank of nude mice and then intraperitoneally injected NaCl or β-elemene. The tumor xenograft volumes were measured every 3 days and the expression of stemness-, differentiation- and EMT-related effectors was determined by Western blot assays in xenografts.Resultsβ-Elemene inhibited proliferation, promoted apoptosis, impaired invasiveness in glioblastoma cells and suppressed the growth of animal xenografts. The expression levels of the stemness markers CD133 and ATP-binding cassette subfamily G member 2 as well as the mesenchymal markers N-cadherin and β-catenin were significantly downregulated, whereas the expression levels of the differentiation-related effectors glial fibrillary acidic protein, Notch1, and sonic hedgehog as well as the epithelial marker E-cadherin were upregulated by β-elemene in vitro and in vivo. Interestingly, the expression of vimentin was increased by β-elemene in vitro; this result was opposite that for the in vivo procedure. Inhibiting β-catenin enhanced the anti-proliferative, EMT-inhibitory and specific marker expression-regulatory effects of β-elemene.Conclusionsβ-Elemene reversed malignant phenotypes of human glioblastoma cells through β-catenin-involved regulation of stemness-, differentiation- and EMT-related molecules. β-Elemene represents a potentially valuable agent for glioblastoma therapy.

Highlights

  • Glioblastoma is the most common and lethal type of primary brain tumor. β-Elemene, a natural plant drug extracted from Curcuma wenyujin, has shown strong anti-tumor effects in various tumors with low toxicity

  • We previously found that β-elemene arrested C6 and U87 glioblastoma cells in the G0/G1 phase of the cell cycle and inhibited cell proliferation by regulating the glia maturation factor β/mitogenactivated protein kinase kinase 3/6/p38 and extracellular signal-regulated kinase 1/2/B cell lymphoma 2/survivin pathways [7,8,9,10]. β-Elemene inhibited cell proliferation and promoted differentiation of glioblastoma stem cells (GSCs) in vitro and in vivo [11]

  • These results indicated that β-elemene inhibited the proliferation of human glioblastoma cells

Read more

Summary

Introduction

Glioblastoma is the most common and lethal type of primary brain tumor. β-Elemene, a natural plant drug extracted from Curcuma wenyujin, has shown strong anti-tumor effects in various tumors with low toxicity. The effects of β-elemene on malignant phenotypes of human glioblastoma cells remain to be elucidated. We evaluated the effects of β-elemene on cell proliferation, survival, stemness, differentiation and the epithelialto-mesenchymal transition (EMT) in vitro and in vivo, and investigated the mechanisms underlying these effects. Β-Elemene inhibited cell proliferation and promoted differentiation of glioblastoma stem cells (GSCs) in vitro and in vivo [11]. GSCs are more difficult to kill than the differentiated population of glioblastoma cells owing to stronger phenotypes in promoting anti-apoptosis, invasion and resistance to chemoradiotherapy [11, 12]. ATP-binding cassette subfamily G member 2 (ABCG2), a chemotherapy resistance-related molecule, is strongly expressed in NSCs and tumor stem cells (TSCs) but is commonly inactive in further matured cells. Notch and Sonic hedgehog (SHH) are closely associated with the differentiation of various tumor cells [21,22,23]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.