Abstract
Coherently strained BiFeO3 epitaxial films deposited on (001)-oriented (LaAlO3)0.3(Sr2AlTaO6)0.7 have a tetragonal crystal form, a stress-distorted version of the rhombohedral phase. A conversion from coherent BiFeO3 to a new, tilted pseudotetragonal phase with the c/a ratio exceeding 1.2 is observed beyond the critical thickness of 60 nm. X-ray reciprocal space maps display that this highly elongated metastable structure is monoclinically distorted by ∼0.2° and exhibits an out-of-plane tilt of ∼3°. These observations are at odds with traditional understandings that a coherent epilayer should turn into its parent structure upon increasing the thickness, providing a new insight into the strain relaxation mechanism of epitaxial films. We show that in the heating and cooling cycles, the transition between these two phases is completely reversible and is associated with the alleviation of thermal stress. Our results reveal that the coherent BiFeO3 epilayer with tetragonal symmetry stabilized by moderate compressive strain behaves as a structural bridge that links the thermally stable rhombohedral phase and the metastable tetragonal-like phase with a giant axial ratio. Moreover, the finding of a BiFeO3 phase mixture in our study extends the threshold in-plane strain of the stress-driven morphotropic phase boundary to a value as low as −2.3%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.