Abstract

The anodic and cathodic polarization dependences for the oxygen electrode based on lanthanum-strontium manganite and the fuel Ni-cermet electrode are studied in the temperature range of 700–900°С in gas media that correspond to working conditions of a reversible fuel cell. The temporal behavior of these electrodes is studied in the course of periodic polarity changes of current with the density of 0.5 A/cm2. The electrode overvoltage is shown to be about 0.1 V in modes of power generation and water electrolysis at 900°С and the current density of 0.5 A/cm2. A single electrolyte supported tubular solid-oxide fuel cell was fabricated and tested in the fuel-cell and hydrogen-generation modes. It is found that at 900°С and overvoltage of 0.7 V, the cell generates the specific electric power of 0.4 W/cm2 when the 50% H2 + 50% H2O gas mixture is used as the fuel and air is used as the oxidizer. At the water electrolysis with the current density of 0.5 A/cm2, which under normal conditions corresponds to generation of about 0.2 and 0.1 L/h of hydrogen and oxygen, respectively, the consumed power is about 0.55 W/cm2. The efficiency of the conversion cycle electric power–hydrogen–electric power is 70–75%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.