Abstract
AbstractA [2+2] cycloaddition reaction has been observed in a number of solids. The cyclobutane ring in a photodimerized material can be cleaved into olefins by UV light and heat. The high thermal stability of the metal–organic salt K2SDC (H2SDC=4,4’‐stilbenedicarboxylic acid) has been successfully utilized to investigate the reversible cleavage of a cyclobutane ring. The two polymorphs of K2SDC undergo reversible cyclobutane formation by UV light and cleavage by heat in cycles. Of these, one polymorph retains its single‐crystal nature during the reversible processes. Polymorphs are known to show different physical properties and chemical reactivities. This work reveals that the retention of single‐crystal nature is strongly associated with the packing of molecules, which is controlled by kinetics and thermodynamics. The photoemissive nature of the products makes this as a promising material for photoswitches and optical data storage devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.