Abstract

This research concentrates on the healing of optical properties, roughness, contact angle hysteresis, and shallow scratches in polymer/nanoparticle composites. A series of ternary composite blends [epoxy/halloysite nanotubes (HNTs)/cellulose acetate butyrate (CAB)] with various CAB concentrations were fabricated and subjected to a series of mechanical damages. The optimized concentration of a nanoparticle is 1.0 vol %, and the CAB concentration is 3.0 vol % based on the mechanical reinforcement and wear resistance. Nanoscale scratching, microlevel falling-sand test, and macrolevel Taber abrasions were utilized to damage the surfaces. The induced damage (roughness and surface scratch up to hundreds of nanometers in depth) healed upon heating. At any temperatures above the softening transition of the semi-interpenetrating network structure of the polymer composites, CAB migrates into the microcracks, and the essential mechanical parameters (modulus, strength, strain to failure) are recovered; in our particular epoxy/HNTs/CAB system, optical transparency is also recovered efficiently. CAB also moves to the macroscopic air/specimen interface and favorably modifies the surface properties, reducing the roll-off angles of water droplets from ∼90° to ∼20°. Through an appropriate choice of CAB additives with different molecular weights, the healing temperature can be tailored.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.