Abstract

The influence of the post-synthesis adsorption of Co(II) ions on the structural and magnetic properties of maghemite (gamma-Fe2O3) nanoparticles with a mean particle size of about 10 nm has been investigated. It is shown that the step-wise adsorption of Co( II) can controllably increase the blocking temperature, T-B, of the system up to 60 K with respect to that of untreated particles, while neither the particle size nor the particle size distribution are significantly modified. This is accompanied by a four-fold increase in the coercivity, H-C, at low temperatures. Using a selective leaching of the previously adsorbed Co(II) ions the T-B and H-C values of the pristine gamma-Fe2O3 nanoparticles are recovered. Hence, a reversible and controllable tailoring of the magnetic properties (e.g., T-B and H-C) of the gamma-Fe2O3 nanoparticles can be achieved by a simple adsorption and desorption process of Co( II) ions after their synthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.