Abstract

Herein, we report the preparation and characterization of the Group 13 metal complexes of a tripodal tris(nitroxide)-based ligand, designated (TriNOx3-)M (M = Al (1), Ga (2), In (3)). Complexes 1 and 2 both activate the O-H bond of a range of alcohols spanning a ∼10 pKa unit range via an element-ligand cooperative pathway to afford the zwitterionic complexes (HTriNOx2-)M-OR. Structures of these alcohol adduct products are discussed. We demonstrate that the thermodynamic and kinetic aspects of the reactions are both influenced by the identity of the metal, with 1 having higher reaction equilibrium constants and proceeding at a faster rate relative to 2 for any given alcohol. These parameters are also influenced by the pKa of the alcohol, with more acidic alcohols reacting both to more completion and faster than their less acidic counterparts. Possible mechanistic pathways for the O-H activation are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.