Abstract

The application potential of ferroelectric thin films largely relies on the controllability of their domain structure. Among the various proposed strategies, mechanical switching is being considered as a potential alternative to replace electrical switching for control of the domain structure of ferroelectric thin films via, e.g., the flexoelectric effect. So far, studies on mechanical switching are confined to out-of-plane polarization switching in ferroelectric thin films, which are in pristine or prepoled single-domain states. In this work, we report reversible in-plane mechanical switching of the monoclinic phase (MC phase) stripe domains in BiFeO3 thin films can be realized by scanning tip force. Via controlling the fast scan direction of the scanning probe microscopy tip and the magnitude of the tip force, the effective trailing field induced by the local tip force can be rotated to consequently switch the net in-plane polarization of the two-variant stripe domain patterns by either 90° or 180°. Moreover, the monoclinic to rhombohedral (MC-R) phase transition occurs during mechanical switching with the distribution of R-phase domains dependent on the switching paths. These results extend our current understanding of the mechanical switching behavior in ferroelectric thin films and should be instructive for their future applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.