Abstract

The synthesis and reactivity of geometrically constrained tricoordinate phosphorus (σ(3)-P) compounds supported by tridentate triamide chelates (N[o-NR-C6H4]2(3-); R = Me or (i)Pr) are reported. Studies indicate that 2 (P{N[o-NMe-C6H4]2}) adopts a Cs-symmetric structure in the solid state. Variable-temperature NMR studies demonstrate a low-energy inversion at phosphorus in solution (ΔG(‡)(exptl)(298) = 10.7(5) kcal/mol), for which DFT calculations implicate an edge-inversion mechanism via a metastable C2-symmetric intermediate. In terms of reactivity, compound 2 exhibits poor nucleophilicity, but undergoes oxidative addition at ambient temperature of diverse O-H- and N-H-containing compounds (including alcohols, phenols, carboxylic acids, amines, and anilines). The resulting pentacoordinate adducts 2·[H][OR] and 2·[H][NHR] are characterized by multinuclear NMR spectroscopy and X-ray crystallography, and their structures (which span the pseudorotation coordinate between trigonal bipyramidal and square planar) are evaluated in terms of negative hyperconjugation. At elevated temperatures, the oxidative addition is shown to be reversible for volatile alcohols and amines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.