Abstract

We report a mechanism for controlling conductance in polymer nanostructures. Poly(3-dodecylthiophene-2,5-diyl) (PDDT) nanostructures were directly written between gold electrodes using thermal dip pen nanolithography and then characterized in UHV. We find that the conductivity of a PDDT nanostructure can be increased by more than five orders of magnitude (from <10−4 to 10 S cm−1) by exposure to energetic electrons, and then repeatedly returned to a semi-insulating state by subsequent exposure to hydrogen. Based on systematic measurements complemented by calculations of electronic structure and electron transport in PDDT, we conclude that the conductance modulation is caused by H desorption and reabsorption. The phenomenon has potential applications in hydrogen sensing and molecular electronics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.