Abstract

The silicon-carbon bond is a valuable linchpin for synthetic transformations. However, installing Si-C functionalities requires metalated C-nucleophiles, activated silicon reagents (silylium ions, silyl radicals, and silyl anions), or transition metal catalysis, and it occurs irreversibly. In contrast, spontaneous C-H silylations with neutral silanes leading to anionic silicates, and their reversible deconstruction, are elusive. Herein, the CH-bond silylation of heterocycles or a terminal alkyne is achieved by reaction with bis(perfluoro(N-phenyl-ortho-amidophenolato))silane and 1,2,2,6,6-pentamethylpiperidine. Computational and experimental insights reveal a frustrated Lewis pair (FLP) mechanism. Adding a silaphilic donor to the ammonium silicate products induces the reformation of the C-H bond, thus complementing previously known irreversible C-H bond silylation protocols. Interestingly, the FLP "activated" N-methylpyrrole exhibits "deactivated" features against electrophiles, while a catalytic functionalization is found to be effective only in the absence of a base.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.