Abstract

Carbon nanotubes (CNTs) have been shown to cross cell membranes and can mediate the internalization of macromolecules. These characteristics have constituted CNTs as an exciting new tool for drug delivery and biological sensing. While CNTs exhibit great potential in biomedical and pharmaceutical applications, neither the cell penetration mechanism of CNTs nor the intracellular fate of the internalized CNTs are fully understood. In this study, time-lapse fluorescence microscopy was used to investigate the intracellular distribution of FITC labeled PEGylated single-walled CNTs (FITC-PEG-SWCNTs) in living cells and shown that PEGylated SWCNTs entered the nucleus of several mammalian cell lines in an energy-dependent process. The presence of FITC-PEG-SWCNTs in the cell nucleus did not cause discernible changes in the nuclear organization and had no effect on the growth kinetics and cell cycle distribution for up to 5 days. Remarkably, upon removal of the FITC-PEG-SWCNTs from the culture medium, the internalized FITC-PEG-SWCNTs rapidly moved out of the nucleus and were released from the cells. Thus, the intracellular PEGylated SWCNTs were highly dynamic and the cell penetration of PEGylated SWCNTs appeared as bidirectional. These observations suggest SWCNTs may be used as an ideal nanovector in biomedical and pharmaceutical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.