Abstract

The relation between computation and measurement at a fundamental physical level is yet to be understood. Rolf Landauer was perhaps the first to stress the strong analogy between these two concepts. His early queries have regained pertinence with the recent efforts to developed realizable models of quantum computers. In this context the irreversibility of quantum measurement appears in conflict with the requirement of reversibility of the overall computation associated with the unitary dynamics of quantum evolution. The latter in turn is responsible for the features of superposition and entanglement which make some quantum algorithms superior to classical ones for the same task in speed and resource demand. In this article we advocate an approach to this question which relies on a model of computation designed to enforce the analogy between the two concepts instead of demarcating them as it has been the case so far. The model is introduced as a symmetrization of the classical Turing machine model and is then carried on to quantum mechanics, first as a an abstract local interaction scheme (symbolic measurement) and finally in a nonlocal noninteractive implementation based on Aharonov–Bohm potentials and modular variables. It is suggested that this implementation leads to the most ubiquitous of quantum algorithms: the Discrete Fourier Transform.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.