Abstract

We have developed further a chromatographic model for studying the hydrophobic interactions which characterize the way a ligand binds to its receptor. This model is based on observing the retention behaviour of de novo designed model 18-residue amphipathic α-helical peptides (representing the hydrophobic binding domain of a ligand) on reversed-phase packings by varying hydrophobicity (representing a receptor protein with a hydrophobic binding pocket). Mutants of the “native” peptide ligand (which contains seven Leu residues in its non-polar face) were designed by replacing one residue in the center of the extremely non-polar face of the amphipathic α-helix. Through reversed-phase liquid chromatography of these peptides at pH 2.0 on cyano and C 18 columns, we have demonstrated how an increase in receptor hydrophobicity (represented by an increase in column stationary phase hydrophobicity; cyano→C 18) significantly enhances hydrophilicity of polar amino acid side-chains at the ligand–receptor interface while moderately enhancing the hydrophobicity of non-polar side-chains. The addition of salt (100 m M sodium perchlorate) to the aqueous environment surrounding the binding site of receptor and ligand was also shown to have a profound effect on side-chain hydrophilicity/hydrophobicity in the binding interface. This effect was particularly dramatic for the positively charged side-chains Arg, Lys and His, whose significant enhancement of hydrophobicity in the presence of the cyano column contrasted with their increase in hydrophilicity in the presence of the considerably more hydrophobic C 18 stationary phase. Our results have major implications to understanding the influence of hydrophobic and aqueous environment on hydrophilicity/hydrophobicity of amino acid side-chains and the role side-chains play in the folding and stability of proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.