Abstract
Pancreatic proteolytic digestive enzymes are a major extracellular barrier to the sucessful systemic delivery of biopharmaceuticals via the oral route, whereas in health in the lungs these powerful proteases are virtually absent from the extracellular fluids. Despite this, the absorption of some (but not all) natural peptides and proteins from the lungs may be poor, and one has to acknowledge that information on the activity and spatial distribution of proteolytic enzymes in the human lung is scarce. Here, we investigated expression patterns of a series of proteolytic enzymes in several human respiratory cell types on mRNA level in an attempt to better understand the fate of inhaled biopharmaceuticals. The mRNA expression of proteolytic enzymes (i.e., carboxypeptidases: CPA1, CPA2, CPB, CPM; gamma-glutamyltransferases: GGT1, GGT2; angiotensin-converting enzymes: ACE, ACE2; aminopeptidases: APA, APB, APN, APP1, APP2, APP3; endopeptidases: 24.11 (neprilysin), 24.15 (thimet oligopeptidase), 24.18 (meprin A); enteropeptidase; trypsin 1, trypsin 2; neutrophilic elastase; dipeptidyl peptidase 4; gamma-glutamylhydrolase) was investigated by semiquantitative RT-PCR in human bronchial (hBEpC, Calu-3, 16HBE14o-) and alveolar (A549) epithelial cells, respectively. Gastrointestinal Caco-2 cells were used as comparison. Obvious differences were observed in proteinases' expression pattern between the investigated cell types. Although considered to be of bronchial epithelial phenotype, neither Calu-3 nor 16HBE14o- cells matched the mRNA expression pattern of hBEpC in primary culture. Of all investigated cell lines, Caco-2 expresses the highest number of proteases and peptidases. Although mRNA expression does not necessarily signify enzyme functionality, our results provide the first comprehensive analysis of peptidase and protease expression and distribution in human lung epithelial cells and are the basis for further investigations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Aerosol Medicine and Pulmonary Drug Delivery
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.