Abstract

Reverse-phase microarray assays using phospho-specific antibodies (RPPA) can directly measure levels of phosphorylated protein isoforms. In the current study, lysates from parental and multidrug resistant (MDR) CEM leukemia cells were spotted onto reverse-phase protein microarrays and probed with a panel of phospho-antibodies to ERK, PCK and Akt pathways. In particular, the Akt pathway is considered to play significant roles in leukemia and Akt inhibitor therapy has been proposed as a potential tool in the treatment of this disease. The RPPA data prompted us to investigate deeper this pathway. Here, we found that whereas total Akt1 protein level is higher in parental CEM cells, the activated isoform content, p-Akt1, increases in doxorubicin-selected CEM cells (MDR-CEM). This was backed up by Western blot analysis, confirming that Akt1 activity/phosphorylation may be up-regulated in MDR-CEM cells. Further exploration of inhibitory therapy in this system was evaluated. The TNF-related apoptosis-inducing ligand, TRAIL, has been shown to selectively kill tumor cells. Herein, we describe that in MDR-CEM cells TRAIL responsiveness correlates with a reduced expression of endogenous Akt1, suggesting that the MDR phenotype associated to P-gp sensitizes cells to TRAIL therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.