Abstract

Perceiving and producing vocal sounds are important functions of the auditory-motor system and are fundamental to communication. Prior studies have identified a network of brain regions involved in pitch production, specifically pitch matching. Here we reverse engineer the function of the auditory perception-production network by targeting specific cortical regions (e.g., right and left posterior superior temporal (pSTG) and posterior inferior frontal gyri (pIFG)) with cathodal transcranial direct current stimulation (tDCS)—commonly found to decrease excitability in the underlying cortical region—allowing us to causally test the role of particular nodes in this network. Performance on a pitch-matching task was determined before and after 20 min of cathodal stimulation. Acoustic analyses of pitch productions showed impaired accuracy after cathodal stimulation to the left pIFG and the right pSTG in comparison to sham stimulation. Both regions share particular roles in the feedback and feedforward motor control of pitched vocal production with a differential hemispheric dominance.

Highlights

  • Making vocal sounds is a fundamental capacity of communication and relies on multiple neural systems that interact to subserve perception, auditory-motor representation, motor plan selection and execution (Hickok and Poeppel, 2007; Pulvermüller, 2010)

  • Cents deviation was lowest for the sham condition (Mean = 33.47, SD = 14.83) and highest in the LpIFG condition (Mean = 52.65, SD = 28.59), followed by RpSTG (Mean = 44.075, SD = 17.64), LpSTG (Mean = 36.38, SD = 13.54) and RpIFG (Mean = 35.44; SD = 25.07)

  • Follow-up pairwise comparisons of real stimulation compared to sham stimulation revealed a significant difference between the right posterior superior temporal gyrus (pSTG) stimulation (t(14) = 2.21, p = 0.044) and sham stimulation, as well as between the left posterior inferior frontal gyri (pIFG) compared to sham (t(14) = 2.85, p = 0.012)

Read more

Summary

Introduction

Making vocal sounds is a fundamental capacity of communication and relies on multiple neural systems that interact to subserve perception, auditory-motor representation, motor plan selection and execution (Hickok and Poeppel, 2007; Pulvermüller, 2010). To acquire and execute vocalmotor plans accurately, the auditory system must represent different dimensions of vocal sound targets (such as loudness, duration and pitch), as well as receive feedback to compute and minimize errors of production considering the intended targets in real time (Guenther, 2006). Many natural languages in the world rely on pitch information to differentiate between specific semantic information. The ability to perceive pitch information from the environment and from one’s own vocal output, and to represent this information to accurately produce a target pitch, are important skills that the brain must develop to communicate efficiently using sounds (Fyk, 1985; Stadler, 1990; Kim, 2000)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.