Abstract

Experiments involving monodisperse Geldart Group B particles have been carried out in a pilot-scale riser of a circulating fluidized bed (CFB). Several combinations of superficial gas velocity (Us), solid flux (Gs), average particle diameter (dave), and particle material density (ρs) were investigated. Surprisingly, the experiments reveal the presence of a reverse core-annulus profile (i.e., a dense core with a dilute annulus) under certain conditions. Specifically, for the large glass beads (dave=650μm, ρs=2500kg/m3), the reverse core-annulus profile was observed near the top of the riser for all Us and Gs combinations examined. For high-density polyethylene (HDPE) pellets (dave=650μm, ρs=900kg/m3) of the same dave, reverse core-annulus was observed at the top of the riser only at relatively low Gs. However, for the smaller glass beads (dave=170μm, ρs=2500kg/m3), the traditional core-annulus profile was observed for all Us and Gs combinations. Although previous work provides possible explanations for this behavior (gas-phase turbulence, etc.), the evidence obtained in this system suggests a novel dominant factor for reverse core-annulus flow: the particle Stokes number (St). Lower-St particles are more apt to follow the gas exiting the riser, while higher-St particles have a longer relaxation time and thus are more likely to re-enter the riser after collision with the roughened rounded-elbow exit. Accordingly, the re-direction of particles from the rounded-elbow exit and back into riser due to large-scale roughness along the elbow is greater for higher-St particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.