Abstract

The response of vegetation growth to soil moisture varies greatly from space and time under climate change and anthropogenic activities. As an important grain producer in China, the vegetation growth and grain production of North China are constrained by the region's water resources. With the significant increase in vegetation greenness in North China over the last 40 years, it is essential to explore the changes in soil moisture constraints on vegetation growth to water management. However, to what degree vegetation growth responds to soil moisture and how the response varies spatiotemporally in North China remain unclear. In this study, the response patterns of vegetation growth to soil moisture at different depths and the spatiotemporal trend patterns of their relationships were explored thoroughly based on long time series remote sensing data in North China over the past 40 years. The results showed that compared to forests, the growth of grasslands and crops with one maturity per year and two maturity per year in North China was more constrained by soil moisture. Due to the combined effects of climatic conditions and human activities, vegetation growth in North China has been significantly less constrained by soil moisture over the last 40 years. This was especially seen in one maturity per year crop and natural vegetation in Shanxi and central Shandong. However, with the significant increase in temperature, potential evapotranspiration and water demand of the crop, the moisture constraints on vegetation growth in North China have begun to show an increasing trend since the early 2000s, especially for irrigated crop in central and southern North China. These findings highlight a comprehensive understanding of the vegetation response to soil moisture from the time-varying perspective and provide a theoretical basis for water management and appropriate planning of agricultural water use in North China.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.