Abstract

The purpose of this work is to determine the molecular mechanisms underlying tamoxifen resistance. We show here that ER-β is epigenetically silenced in a cell line with acquired tamoxifen resistance (MCF-7/TAM-R) and this could be reversed by 5-AZA-deoxycytidine (5-AZA) and trichostatin-A (TSA) pre-treatment. Subsequent treatment with 4-hydroxy-tamoxifen (4-OHT) induced ER-β nuclear translocation, upregulated pS2 and p21 levels and reduced cell viability. Transfection with an ER-β expression vector sensitized MCF-7/TAM-R cells to the growth inhibitory and pro-apoptotic effects of 4-OHT, indicating that ER-β re-expression alone is sufficient to restore sensitivity to tamoxifen. This novel finding reveals that ER-β is fundamental in overcoming acquired tamoxifen resistance and provides insights for new therapeutic protocols against breast cancer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.