Abstract

When yeast from the early stages of meiosis are transferred from sporulation to growth medium, they can reenter the mitotic cell cycle directly. In contrast, cells from later stages of meiosis (after the initiation of the first nuclear division) will complete meiosis and sporulation despite the shift to growth medium, a phenomenon known as "commitment to meiosis." This study reports the surprising finding that when the normal progression of meiosis is arrested, cells from later stages of meiosis can return to growth. Cells were arrested after the first or second meiotic division by three independent means: the spo14 mutation, the spo3-1 mutation, and a high-temperature arrest of wild-type cells. In every case, the arrested cells were able to form buds after transfer to growth medium. These cells, however, experienced a delay upon return to growth relative to uncommitted cells. We propose that the commitment phenomenon results from a transient delay of mitotic growth, which occurs specifically during meiosis, and that commitment does not involve an irreversible inhibition of mitosis as previously thought.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.