Abstract

Data workers usually seek to understand the semantics of data wrangling scripts in various scenarios, such as code debugging, reusing, and maintaining. However, the understanding is challenging for novice data workers due to the variety of programming languages, functions, and parameters. Based on the observation that differences between input and output tables highly relate to the type of data transformation, we outline a design space including 103 characteristics to describe table differences. Then, we develop COMANTICS, a three-step pipeline that automatically detects the semantics of data transformation scripts. The first step focuses on the detection of table differences for each line of wrangling code. Second, we incorporate a characteristic-based component and a Siamese convolutional neural network-based component for the detection of transformation types. Third, we derive the parameters of each data transformation by employing a "slot filling" strategy. We design experiments to evaluate the performance of COMANTICS. Further, we assess its flexibility using three example applications in different domains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.