Abstract

Olivine NaFePO4 is a promising cathode material for Na-ion batteries. Intermediate phases such as Na0.66FePO4 govern phase stability during intercalation-deintercalation processes, yet little is known about Na+ diffusion in NaxFePO4 (0 < x < 1). Here we use an advanced simulation technique, Randomized Shell Mass Generalized Shadow Hybrid Monte Carlo Method (RSM-GSHMC) in combination with a specifically developed force field for describing NaxFePO4 over the whole range of sodium compositions, to thoroughly examine Na+ diffusion in this material. We reveal a novel mechanism through which Na+/Fe2+ antisite defect formation halts transport of Na+ in the main diffusion direction [010], while simultaneously activating diffusion in the [001] channels. A similar mechanism was reported for Li+ in LiFePO4, suggesting that a transition from one- to two-dimensional diffusion prompted by antisite defect formation is common to olivine structures, in general.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.