Abstract

Wenchang Field in the South China Sea contains a well-developed fault system, resulting in complex subsurface geology. Imaging the complex fault system plays an important role in hydrocarbon exploration in this area since the fault system forms a link between the source rocks and reservoirs. However, it is difficult to obtain a high-quality depth image of the fault system due to the effects of complex velocity and seismic absorption. Inaccurate depth velocities lead to fault shadows and structure distortions at the target zone. Absorption effects further deteriorate seismic imaging as they cause amplitude attenuation, phase distortion, and resolution reduction. We demonstrate how a combination of high-resolution depth velocity modeling and Q imaging work together to resolve these challenges. This workflow provides a step change in image quality of the complex fault system and targeted source rocks at Wenchang Field, significantly enhancing structure interpretation and reservoir delineation. A couple of commercial discoveries have been made, and several other potential hydrocarbon reservoirs have been identified based on the reprocessed data, which reveal new hydrocarbon potential in this region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.