Abstract

Recycling of deactivated palladium (Pd)-based catalysts can not only lower the economic cost of their industrial use but also save the cost for waste disposal. Considering that the sulfur-poisoned Pd (PdxSy) with a strong Pd-S bond is difficult to regenerate, here, we propose a direct reuse of such waste materials as an efficient catalyst for decontamination via Fenton-like processes. Among the PdxSy materials with different poisoning degrees, Pd4S stood out as the most active catalyst for peroxymonosulfate activation, exhibiting pollutant-degradation performance rivaling the Pd and Co2+ benchmarks. Moreover, the incorporated S atom was found to tune the surface electrostatic potentials and charge densities of the Pd active site, triggering a shift in catalytic pathway from surface-bound radicals to predominantly direct electron transfer pathway that favors a highly selective oxidation of phenols. The catalyst stability was also improved due to the formation of strong Pd-S bond that reduces corrosion. Our work paves a new way for upcycling of Pd-based industrial wastes and for guiding the development of advanced oxidation technologies toward higher sustainability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.