Abstract

Presented herein is a novel CT denoising method uses a skip residual encoder-decoder framework with group convolutions and a novel loss function to improve the subjective and objective image quality for improved disease detection in patients with acute ischemic stroke (AIS). In this retrospective study, confirmed AIS patients with full-dose NCCT head scans were randomly selected from a stroke registry between 2016 and 2020. 325 patients (67±15 years, 176 men) were included. 18 patients each with 4-7 NCCTs performed within 5-day timeframe (83 total scans) were used for model training; 307 patients each with 1-4 NCCTs performed within 5-day timeframe (380 total scans) were used for hold-out testing. In the training group, a mean CT was created from the patient's co-registered scans for each input CT to train a rotation-reflection equivariant U-Net with skip and residual connections, as well as a group convolutional neural network (SRED-GCNN) using a custom loss function to remove image noise. Denoising performance was compared to the standard Block-matching and 3D filtering (BM3D) method and RED-CNN quantitatively and visually. Signal-to-noise ratio (SNR) and contrast-to-noise (CNR) were measured in manually drawn regions-of-interest in grey matter (GM), white matter (WM) and deep grey matter (DG). Visual comparison and impact on spatial resolution were assessed through phantom images. SRED-GCNN reduced the original CT image noise significantly better than BM3D, with SNR improvements in GM, WM, and DG by 2.47x, 2.83x, and 2.64x respectively and CNR improvements in DG/WM and GM/WM by 2.30x and 2.16x respectively. Compared to the proposed SRED-GCNN, RED-CNN reduces noise effectively though the results are visibly blurred. Scans denoised by the SRED-GCNN are shown to be visually clearer with preserved anatomy. The proposed SRED-GCNN model significantly reduces image noise and improves signal-to-noise and contrast-to-noise ratios in 380 unseen head NCCT cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.