Abstract
PurposeThe goal of the present study was to use a three‐dimensional (3D) gradient echo volume in combination with a fat‐selective excitation as a 3D motion navigator (3D FatNav) for retrospective correction of microscopic head motion during high‐resolution 3D structural scans of extended duration. The fat excitation leads to a 3D image that is itself sparse, allowing high parallel imaging acceleration factors – with the additional advantage of a minimal disturbance of the water signal used for the host sequence.MethodsA 3D FatNav was inserted into two structural protocols: an inversion‐prepared gradient echo at 0.33 × 0.33 × 1.00 mm resolution and a turbo spin echo at 600 μm isotropic resolution.ResultsMotion estimation was possible with high precision, allowing retrospective motion correction to yield clear improvements in image quality, especially in the conspicuity of very small blood vessels.ConclusionThe highly accelerated 3D FatNav allowed motion correction with noticeable improvements in image quality, even for head motion which was small compared with the voxel dimensions of the host sequence. Magn Reson Med 75:1030–1039, 2016. © 2015 Wiley Periodicals, Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.