Abstract

We analyzed the behavior of the complex Fourier spectrum of the angle-resolved light scattering pattern (LSP) of a sphere in the framework of the Wentzel–Kramers–Brillouin (WKB) approximation. Specifically, we showed that the phase value at the main peak of the amplitude spectrum almost quadratically depends on the particle refractive index, which was confirmed by numerical simulations using both the WKB approximation and the rigorous Lorenz–Mie theory. Based on these results, we constructed a method for characterizing polystyrene beads using the main peak position and the phase value at this point. We tested the method both on noisy synthetic LSPs and on the real data measured with the scanning flow cytometer. In both cases, the spectral method was consistent with the reference non-linear regression one. The former method leads to comparable errors in retrieved particle characteristics but is 300 times faster than the latter one. The only drawback of the spectral method is a limited operational range of particle characteristics that need to be set a priori due to phase wrapping. Thus, its main application niche is fast and precise characterization of spheres with small variation range of characteristics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.