Abstract

Abstract Three research expeditions to the Ross Sea, Antarctica resulted in collection of a dataset of more than 270 km of side-scan and chirp-sonar data, more than 330 km of swath bathymetry and 3.5 kHz data, and 24 cores within a glacially-carved trough. The former ice-stream flow path is divided into six zones, covering a distance of approximately 370 km, distinguished by unique stratigraphic signatures and geomorphic features. An erosional surface with thin, patchy lodgement till characterizes Zone 1. This region is interpreted as having experienced relatively high basal shear stress conditions. Zones 2, 3, and 4 are characterized by an erosional surface and thin, time-transgressive subglacial and grounding-line proximal deposits that include back-stepping moraines, flutes, transverse moraines, and corrugation moraines. These zones represent the transition between erosional and depositional regimes under the expanded LGM ice sheet; material eroded from the inner shelf was transported toward the outer shelf, possibly as a thin deforming till layer. The two outer zones are depositional and include maximum grounding-line (Zone 5) and pro-glacial deposits that were overridden subsequently by the ice sheet (Zone 6). Surface features include mega-scale glacial lineations, corrugation moraines, and iceberg furrows. Ice in these zones is interpreted as having experienced relatively lower basal shear stress, an extensional regime, and faster flow. This advance may have destabilized the ice sheet, initiating local draw-down and production of icebergs that furrowed the sea floor. Corrugation moraines are thought to represent annual retreat moraines, constraining the retreat rate of the ice sheet across the continental shelf to a consistent 40 to 100 m a −1 .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.